Gromov-Lawson-Rosenberg conjecture

نویسنده

  • Thomas Schick
چکیده

Doing surgery on the 5-torus, we construct a 5-dimensional closed spin-manifold M with π1(M) ∼= Z ×Z/3, so that the index invariant in the KO-theory of the reduced C-algebra of π1(M) is zero. Then we use the theory of minimal surfaces of Schoen/Yau to show that this manifolds cannot carry a metric of positive scalar curvature. The existence of such a metric is predicted by the (unstable) Gromov-Lawson-Rosenberg conjecture. 1 Obstructions to positive scalar curvature 1.1 Definition. A manifold M which admits a metric of positive scalar curvature is called a pscm-manifold. We start with a discussion of the index obstruction for spin manifolds to be pscm, constructed by Lichnerowicz [6], Hitchin [4] and in the following refined version due to Rosenberg [9]. 1.2 Theorem. Let M be a closed spin-manifold, π := π1(M). One can construct a homomorphism, called index, from the singular spin bordism Ω ∗ (Bπ) to the (real) KO-theory of the reduced real C-algebra of π: ind : Ω ∗ (Bπ) → KO∗(C ∗ redπ) Let u : M → Bπ be the classifying map for the universal covering of M . If M is pscm, then ind([u : M → Bπ]) = 0 ∈ KOm(C ∗ red) ∗e-mail: [email protected] www: http://www.uni-math.gwdg.de/schick/

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : d g - ga / 9 40 70 02 v 1 5 J ul 1 99 4 A “ STABLE ” VERSION OF THE GROMOV - LAWSON CONJECTURE

We discuss a conjecture of Gromov and Lawson, later modified by Rosenberg, concerning the existence of positive scalar curvature metrics. It says that a closed spin manifold M of dimension n ≥ 5 has a positive scalar curvature metric if and only if the index of a suitable “Dirac” operator in KOn(C∗(π1(M))), the real K-theory of the group C∗-algebra of the fundamental group of M , vanishes. It i...

متن کامل

Positive and negative results concerning the Gromov-Lawson-Rosenberg conjecture

The Gromov-Lawson-Rosenberg (GLR)-conjecture for a group Γ states that a closed spin manifold M (n ≥ 5) with fundamental group Γ admits a metric with scal > 0 if and only if its C-index α(M) ∈ KOn(C ∗ red (Γ)) vanishes. We prove this for groups Γ with lowdimensional classifying space and products of such groups with free abelian groups, provided the assembly map for the group Γ is (split) injec...

متن کامل

The Gromov-lawson-rosenberg Conjecture for Cocompact Fuchsian Groups

We prove the Gromov-Lawson-Rosenberg conjecture for cocompact Fuchsian groups, thereby giving necessary and sufficient conditions for a closed spin manifold of dimension greater than four with fundamental group cocompact Fuchsian to admit a metric of positive scalar curvature. Given a smooth closed manifold M, it is a long-standing question to determine whether or notM admits a Riemannian metri...

متن کامل

Positive Scalar Curvature for Manifolds with Elementary Abelian Fundamental Group

The statement often called the Gromov-Lawson-Rosenberg Conjecture asserts that a manifold with finite fundamental group should admit a metric of positive scalar curvature except when the KO∗-valued index of some Dirac operator with coefficients in a flat bundle is non-zero. We prove spin and oriented non-spin versions of this statement for manifolds (of dimension ≥ 5) with elementary abelian fu...

متن کامل

Remarks on a Conjecture of Gromov and Lawson

Gromov and Lawson conjectured in [GL2] that a closed spin manifold M of dimension n with fundamental group π admits a positive scalar curvature metric if and only if an associated element in KOn(Bπ) vanishes. In this note we present counter examples to the ‘if’ part of this conjecture for groups π which are torsion free and whose classifying space is a manifold with negative curvature (in the A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997